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It has recently been suggested that in certain special nonsupersymmetric type II string

compactifications, at least the first two perturbative contributions to the cosmological con-

stant Λ vanish. Support for perturbative vanishing beyond 1-loop (as well as evidence for

the absence of some nonperturbative contributions) has come from duality arguments.

There was also a direct 2-loop computation which was incomplete; in this note we explain

the deficiency of the previous 2-loop calculation and discuss the complete 2-loop computa-

tion in two different models. The corrected analysis yields a vanishing 2-loop contribution

to Λ in these models.
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1. Introduction

A new class of non-supersymmetric type II models was recently introduced [1,2]. These

models have a simple mechanism for cancellation of the 1-loop vacuum energy (due to a

guaranteed bose-fermi degeneracy). A similar class of models was constructed in the free-

fermionic prescription in [3]. In [1] a heuristic argument suggesting that the cancellation

should persist to all higher loops was presented. A broader motivation arising from the cor-

respondence between quantum-mechanical fixed lines and flat dilaton potentials [4] in the

AdS/CFT correspondence [5] also suggests that cancellation should occur. Various string

duality computations now provide indirect evidence for the absence of certain perturbative

(and also certain nonperturbative) contributions to Λ in these models [6,2,3].

In [1] a direct analysis of the 2-loop contribution to the cosmological constant was

also presented. It was argued that, in a particular gauge, it cancels pointwise on the

moduli space. This was based on an analysis of only the spin-structure-dependent part

of the amplitude. This analysis was incomplete. In the gauge we chose, picture changing

operators coincide, and their operator product expansion produces poles. Some of these

pole pieces cancel between matter and ghost contributions, or constitute total derivatives

on the moduli space. In general, however, there can be finite pieces which arise from the

Taylor expansion of the spin-structure dependent piece.1

In this note we rectify this situation for both the original model of [1] and for an

even simpler model which also enjoys similar properties, and was introduced in [2]. This

analysis will also appear in a revised version of [1]. In the simpler model, if we choose

the gauge with coincident picture-changing operators, summing over all spin structures

produces a high enough order zero in the spin-structure-dependent piece to cancel against

surviving poles in the spin-structure-independent factor. We discuss this cancellation in

§4. In §5, we analyze the Taylor expansion of the original set of models [1]. We show

that after summing over spin structures all potentially finite terms either cancel between

different terms in the correlator of picture changing operators or vanish directly.

Perturbative string calculations at higher genus are notoriously subtle. In all of our

analysis we assume that the prescription [7] (following e.g. [8] and [9]) for the super-

symmetric 2-loop GSO phases is correct (in particular, in [10] it was argued that this

1 We thank Greg Moore for pointing out this error and for providing helpful constructive

comments.
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prescription leads to the correct phases upon factorization). Adjusting the supersymmet-

ric expression to incorporate the phases and twists of our nonsupersymmetric models is

relatively straightforward, and we see that the cancellation persists if we make a further

specialization of the gauge choice. Different gauge choices differ by total derivatives on

the moduli space as explained in [11,12]. This argument applies twist structure by twist

structure in the orbifold theory, as what it uses is deformation of a contour integral of the

BRST charge, which is invariant under the orbifold group. The corresponding boundary

contributions cancel as discussed in [1]. As explained in [1], issues of modular invariance

of the gauge choice are simpler in our models due to shifts involved in the orbifold group

elements, which greatly reduce the modular group in a given twist structure.

2. The Simpler Model

In addition to the original model of [1], we will also be considering a new model

introduced in [2]. Since the description of the new model there is somewhat terse, we

introduce it in greater detail here. Like the model of [1], it is an orbifold generated by

two elements F and G. We start from the type II string compactified on a T 6 which is a

product of six circles at the self-dual radius R = ls/
√

2, where ls =
√
α′ is the string scale.

F and G act on the left and right moving degrees of freedom of the superstring as

S1 F G

1 1 (s,−1)

2 1 (s,−1)

3 1 (s,−1)

4 1 (s,−1)

5 1 (0, s2)

6 (s, s) 1

(−1)FR (−1)FL

s refers to a shift by R/2 = ls/2
√

2. As explained in [2], this model has vanishing 1-loop

vacuum energy (after integrating over Re τ) due to the fact that the trace of G acting on

level matched states in the F -twisted sector vanishes,2 and the other modular inequivalent

contributions vanish by zero modes due to effective supersymmetry.

2 The relevant fundamental domain for the integral is the strip instead of the normal keyhole

region due to the shifts in G.
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3. 2-loops with supersymmetry

In this section we review the supersymmetric cancellation at 2 loops. As explained

for example in [13,11,12], the type II string path integral can be written as

∫

SMh

dµ0

∫

[dBdCdX ]e−S
6h−6
∏

r=1

(ηr, B)
4h−4
∏

a=1

δ((ηa, B)) (3.1)

Here B,C denote the b, β and c, γ ghosts, where (b, c) are the spin-(2,-1) conformal ghosts

and (β, γ) are the spin-(3/2,-1/2) superconformal ghosts. X denotes the matter fields and

ηr and ηa are Beltrami differentials relating the metric and gravitino to the moduli and

supermoduli. In components,

(ηr, B) =

∫

ηz
rz̄bzz +

∫

η+
rz̄βz+ +

∫

ηz̄
rzbz̄z̄ +

∫

η−rzbz̄− (3.2)

(ηa, B) =

∫

ηz
az̄bzz +

∫

η+
az̄βz+ +

∫

ηz̄
azbz̄z̄ +

∫

η−azbz̄− (3.3)

As explained e.g. in [14,13], we can write the path integral measure on supermoduli space

in terms of a fixed measure on moduli space

dµ0 = dµ[sdet(η,Φ)]−1[sdet(Φ,Φ)]1/2 (3.4)

Here dµ is a fixed measure on the supermoduli space SMh, integrated over a fixed do-

main independent of the beltrami differentials. Φ contains the 3h − 3 holomorphic and

3h − 3 antiholomorphic 2-differentials (b ghost zero mode wavefunctions) and the 2h − 2

holomorphic and 2h− 2 antiholomorphic 3/2-differentials (β ghost zero modes).

After choosing delta-function support for the worldsheet gravitinos, and integrating

out the supermoduli, one obtains a correlation function of picture changing operators [11]

: eφTF := c∂ξ +
1

2
eφψµ∂Xµ − 1

4
∂ηe2φb− 1

4
∂(ηe2φb) (3.5)

and other ghost insertions

∑

α,β,twists

∫

dµ[sdet(η,Φ)]−1[sdet(Φ,Φ)]1/2[dX ][dB][dC]e−S(η̂, b)6h−6ξ(x0)

2h−2
∏

a=1

: eφTF (za) :

4h−4
∏

a=2h−3

: eφ̄T̄F (za) : ξ̄(ȳ0)

(3.6)
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The superconformal ghosts β = ∂ξe−φ, γ = ηeφ are defined in terms of spin-0 and spin

-1 fermions ξ, η and a scalar φ [15]. The spin-0 fermion ξ has a zero mode on the surface

which is absorbed by the insertion of ξ(x0) in (3.6). There is an anomaly in the ghost

number U(1) current which requires insertions of operators with total ghost number 2h−2

to get a nonvanishing result. The correlation functions (3.6) can be evaluated using the

formulas derived in e.g. [16,17].

We will be interested in a gauge choice for which ultimately z1, z2 → ∆γ , where ∆γ

is a divisor corresponding to an odd spin structure γ. We need to consider the (left-

moving) spin-structure-dependent pieces of the correlation function, the poles arising from

the spin-structure-independent local behavior of the picture changing correlator, and the

behavior of the determinant (3.4) in this gauge. According to [11] we have the following

contributions to the spin-structure-dependent pieces of the 2-loop partition function. The

matter part of TF contributes

∑

δ

〈δ|γ〉θ[δ]
4(0)θ[δ](z1 − z2)

θ[δ](z1 + z2 − 2∆γ)
(3.7)

Here δ ≡ (α, β) encodes the spin structure of the various contributions and 〈δ|γ〉 =

e4πi(αγ2−βγ1) encodes the GSO phases [10].

Let us first, following [7], take z1 + z2 = 2∆γ , that is place z1 + z2 at a divisor

corresponding to the canonical class, without setting z1 = z2. The contribution (3.7) then

simplifies to
∑

δ

〈δ|γ〉θ[δ]3(0)θ[δ](z1 − z2) = 4θ[γ]4(z1 − ∆γ) (3.8)

where in the last step we have used a Riemann identity. The Riemann Vanishing Theorem

then implies that this vanishes identically as a function of z1. Thus in this case whatever

poles arise as z1 → z2, the identical zero from the spin structure sum cancels it.

Now turning to the ghost piece of the correlation function of picture-changing opera-

tors, one obtains contributions isomorphic to (3.8) as well as

ωi(z1)
θ[δ]5(0)∂iθ[δ](2z2 − 2∆γ)

θ2[δ](z1 + z2 − 2∆γ)
(3.9)

Here ωi are the canonical basis of holomorphic one-forms on the Riemann surface, satisfying
∫

ai

ωj = δij and
∫

bi

ωj = τij where τ is the period matrix for the surface. Again simplifying

this by first taking z1 + z2 = 2∆γ we obtain

∑

δ

〈δ|γ〉∂z1
(θ[δ]3(0)θ[δ](z1 − z2)) = 4∂z1

(θ[γ]4(z1 − ∆γ)) (3.10)
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Because the right-hand side of this expression is a derivative of 0 (by the Riemann vanishing

theorem), it vanishes identically. Again any poles from the picture changing OPEs are

irrelevant [7].

4. 2-loop cancellation in F,G Model

Let us consider the left-moving spin-structure-dependent pieces of the 2-loop partition

function in the model of section 2. As explained in [1], all supersymmetry-breaking twist

structures map by modular transformations to a canonical one in which there are twists

(1, 1, F, G) in going around cycles (a1, a2, b1, b2). The F twist, which just involves an action

of (−1)FR and a symmetric shift, does not affect the θ-function characteristics and phases.

The effect of the G twist is via its (−1)FL action. This changes the G eigenvalues by a

factor of (−1) in the left-moving Ramond sector relative to a model without the (−1)FL .

In our twist structure there is a G operator inserted on the second handle. So the effect of

the G twist is to change the phase of terms in the spin structure sum with α2 = 1/2, that

is terms with Ramond sector states propagating around handle 2. This means that instead

of phases 〈δ|γ〉 we should have phases 〈δ|γ+(0, 0, 0, 1/2)〉. We will set κ ≡ γ+(0, 0, 0, 1/2)

to simplify the formulas.

Then after imposing z1 + z2 = 2∆γ, we get for the matter correlator

∑

δ

〈δ|κ〉θ[δ]3(0)θ[δ](z1 − z2)θ[γ](
3

∑

i=1

wi − 3∆γ)

∏

i<j E(wi, wj)

E(z1, z2)2

×
(

2πpµ
i p

µ
j ωi(z1)ωj(z2) + 10∂z1

∂z2
logE(z1, z2)

)

(4.1)

where E(z1, z2) is the prime form, which has the property that it goes like z1 − z2 as

z1 → z2. Here the wi, i = 1, . . . , 3h − 3 are the insertion points for the b-ghosts. In

the full amplitude [11], they are contracted with beltrami differentials encoding the gauge

choice for the worldsheet metric. The spin-structure-dependent pieces here (i.e. those that

depend on the characteristic δ) sum up to

4θ[κ](z1 − ∆γ)4 (4.2)

Because of the shift in the theta characteristic after the spin structure sum, the right hand

side no longer vanishes identically. However, if we choose the reference spin structure γ

such that both γ and κ ≡ γ + (0, 0, 0, 1/2) are odd, then we can impose z1, z2 → ∆γ and
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the right hand side of (4.2) vanishes like (z1−z2)4 as z1 → z2. As z1 → z2 the determinant

factor (3.4) produces another zero: plugging in the delta function ηa we obtain

[sdet(η,Φ)]−1 ∝ det(ηa,Φ
3/2
b ) = det(Φ

3/2
b (za)) (4.3)

Here Φ
3/2
b , b = 1, 2 form a basis of holomorphic 3/2-differentials. As the za approach each

other, the determinant (4.3) goes to zero.

Combining the spin structure sum with the determinant factor we have a fifth order

zero. As we take the limit z1 → z2 we must take into account the poles arising from

the prime form E(z1, z2) (which goes like z1 − z2 as z1 → z2). The 2πpµ
i p

µ
j ωi(z1)ωj(z2)

term in (4.1)has a second order pole, which is beaten by our fifth order zero. The other

contributions yield

det(ηa,Φ
3/2
b )4θ[κ](

1

2
(z1 − z2))

4θ[γ](
∑

w − 3∆γ)
∏

i<j

E(wi, wj)
10

(z1 − z2)4
(4.4)

The poles arise from the correlator of picture changing operators. The leading singularity

in this correlator is proportional to c
(z1−z2)4 where c is the total central charge (mat-

ter+ghost). Since this vanishes, there should be no such contribution after including the

ghost terms in the picture changing operators. We will see this cancellation after comput-

ing the ghost correlators. In any case our fifth order zero suffices to cancel this contribution

even before including the ghost piece, but after doing the spin structure sum.

The ghost correlator

〈−1

4
c∂ξ(z1)

(

2∂ηe2φb+ η∂e2φb+ ηe2φ∂b
)

(z2)〉

+〈−1

4

(

2∂ηe2φb+ η∂e2φb+ ηe2φ∂b
)

(z1)c∂ξ(z2)〉 .
(4.5)

gives rise to three types of contributions (see [11] eqn. (38-39) for the complete expression).

One is

∑

δ

〈κ|δ〉θ[δ](0)5θ[δ](2z2 − 2∆γ)ωi(z1)∂
iθ[γ](z1 − z2 +

∑

w − 3∆γ)

θ[δ](z1 + z2 − 2∆γ)2

∏

i<j E(wi, wj)

E(z1, z2)3

(4.6)

Setting z1 + z2 = 2∆γ and summing over δ we get for the spin-structure-dependent piece:

4θ[κ](
1

2
(z1 − z2))

4 ∼ (z1 − z2)
4 (4.7)
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In this contribution, there is a third-order pole from the prime forms, but a fifth-order zero

(4.7) from the spin structure sum times the determinant factor (4.3), so the contribution

cancels as z1 → z2.

The second ghost contribution takes the form

∑

δ

〈κ|δ〉θ[δ](0)5θ[δ](2z2 − 2∆γ)θ[γ](z1 − z2 +
∑

w − 3∆γ)

θ[δ](z1 + z2 − 2∆γ)2

×
∏

i<j E(wi, wj)

E(z1, z2)3
∂z1

log(

∏

j E(z1, wi)

E(z1, z2)5σ(z1)
) + (z1 ↔ z2)

(4.8)

where σ(z1) is defined in [11] and has no zeroes or poles. Taking z1 + z2 = 2∆γ and

summing over δ we get

4θ[κ](
1

2
(z1 − z2))

4

∏

i<j E(wi, wj)

E(z1, z2)3
∂z1

log(

∏

j E(z1, wi)

E(z1, z2)5σ(z1)
) + (z1 ↔ z2) (4.9)

This contribution has again a fifth order zero from the spin-structure sum times the de-

terminant (as in (4.7)). There is also a fourth-order pole from the prime forms. The

contribution is

det(Φ
3/2
b (za))4θ[κ](

1

2
(z1 − z2))

4
∏

i<j

E(wi, wj)
−5

(z1 − z2)4
θ[γ](

∑

w − 3∆γ)

+ (z1 ↔ z2)

(4.10)

This piece cancels against the matter contribution (4.4). As mentioned above this encodes

the fact that the total central charge vanishes. Again taking into account (4.3) we in fact

obtain cancellation directly.

Now let us consider the remaining ghost contributions. These arise from the correlator

〈c∂ξ(z1) (∂e2φ)ηb(z2)〉 + 〈(∂e2φ)ηb(z1) c∂ξ(z2)〉 (4.11)

They take the form

det(Φ
3/2
b (za))

∑

δ

〈κ|δ〉θ[δ](0)5ωi(z1)∂
iθ[δ](2z2 − 2∆γ)θ[γ](z1 − z2 +

∑

w − 3∆γ)

θ[δ](z1 + z2 − 2∆γ)2

∏

i<j E(wi, wj)

E(z1, z2)3

+ (z1 ↔ z2)

(4.12)

In the first term of this contribution (4.11), setting z1 + z2 = 2∆γ and summing on δ gives

ωi(∆γ)∂iθ[κ](z1 − z2)
4 1

(z1 − z2)3
(4.13)
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plus other terms which have lower-order poles. The spin structure sum only gives a third

order zero here due to the derivative acting on the theta functions. The det(Φ
3/2
b (za))

factor gives an additional zero which kills this contribution as z1 → z2.

Thus we see that in the (F,G) model we can pick a gauge for the worldsheet metric as

well as gravitino, for which all the contributions cancel, after summing over all spin struc-

tures and using appropriate Riemann identities. Note that the cancellations explained

above occur via the spin structure sum of each term in the correlator of picture-changing

operators separately, so that the shifts twisting some of the bosons do not affect the argu-

ment. The above cancellation alone is not enough to guarantee that the two-loop amplitude

cancels; one needs the cancellation of the boundary contributions that potentially arise due

to the ambiguity in the choice of gauge slice for the gravitini [18]. In the (F,G) model these

appear to cancel similarly to the analyis in the original models [1]. Note that although

the bulk cancellations we exhibit here would hold also for example for the type of model

studied in [19] (generated by a translation combined with (−1)FL+FR), those models have

a nonzero one-loop vacuum energy and non-zero one-loop tadpoles (as well as tachyons,

for some range of the moduli VEVs). Therefore, the boundary contributions in the latter

case would destroy the cancellation. Nonetheless it is somewhat surprising that the bulk

contribution can be made to cancel by choosing an appropriate gauge in that model.

5. Taylor Expansion in Original Models

In this section we will present the analysis of the coincident gauge for the original

models of [1] (see that paper for the definition of the model). As in [1], we only need to

analyze the twist structure (1, 1, f, g). The f twist affects the characteristics of some of

the θ functions (arising from twisted fields) by shifting them by (0, 0, 1/2, 0) – we shall

denote this as a shift by 1
2L. κ is, as in §4, γ + (0, 0, 0, 1/2), and we choose γ such that

both γ and κ are odd.

The correlation function of the matter part of the picture changing operators breaks

into two contributions. The terms involving 〈ψi∂X i(z1)ψ
i∂X i(z2)〉 with i = 5, · · ·10 give

∑

δ

〈κ|δ〉θ[δ](0)2θ[δ + 1
2L](0)2θ[δ](z1 − z2)

θ[δ](z1 + z2 − 2∆γ)

×(pµ
i ω

i(z1)p
µ
j ω

j(z2)
1

E(z1, z2)2
+

6

E(z1, z2)2
∂z1

∂z2
logE(z1, z2))

×det(Φ3/2
a (zb))

(5.1)
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Upon setting z1 + z2 = 2∆γ we can cancel the denominator against one factor in the

numerator to get

∑

δ

〈κ|δ〉θ[δ](0)θ[δ](z1 − z2)θ[δ +
1

2
L](0)2 = 4θ[κ](

1

2
(z1 − z2))θ[κ+

1

2
L](

1

2
(z1 − z2)) (5.2)

for the spin-dependent piece of this correlator. Because κ is an odd spin structure, this

vanishes like (z1 − z2)
2. The factor of det(Φ

3/2
a (zb)) in (5.1) also vanishes like (z1 − z2) as

z1 → z2, so all in all (5.1) has a (z1 − z2)
3 multiplying the prime forms. However, since

the prime-forms are yielding poles as z1 → z2, it remains to check that there are no finite

pieces in (5.1).

The terms proportional to 1
E(z1,z2)2

times the loop momenta clearly vanish in the

limit, since there is only a second order pole from the prime forms which cannot cancel the

third order zero we found from the spin structure sum and the superdeterminant. This

leaves the term which goes like 1
E(z1,z2)2

∂z1
∂z2

logE(z1, z2). Using the fact that E(z1, z2)

has a Taylor expansion of the form

E(z1, z2) ∼
∞
∑

n=0

cn(z1 − z2)
2n+1 (5.3)

as z1 → z2, one sees that this combination of prime forms has an expansion

1

E(z1, z2)2
∂z1

∂z2
logE(z1, z2) ∼

∞
∑

n=−2

dn(z1 − z2)
2n (5.4)

On the other hand, the determinant factor is an odd function of z1 − z2 with an expansion

of the form

det(Φ3/2
a (zb)) ∼

∞
∑

m=0

em(z1 − z2)
2m+1 (5.5)

while the sum over spin structures (5.2) is an even function with a second order zero at

z1 = z2. From these facts, it is easy to see that the full expression (5.1) has an expansion

of the form
∞
∑

j=0

fj(z1 − z2)
2j−1 (5.6)

as z1 → z2.

Examining (5.6), we see that

• There are no finite contributions as z1 → z2.
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• There is a (gauge artifact) pole as z1 → z2; in fact this pole receives contributions from the

various matter and ghost correlators proportional to the matter/ghost central charges, and

hence cancels once all of the terms are taken into account (since ctot = cmatter+cghost = 0).

We will see this explicitly once we compute the remaining matter and ghost contributions.

The second type of matter correlator arises from contracting the ψi∂X i(z1)ψ
i∂X i(z2)

with i = 1, · · ·4. This leads to a contribution

∑

δ

〈κ|δ〉θ[δ](0)3θ[δ + 1
2
L](0)θ[δ + 1

2
L](z1 − z2)

θ[δ](z1 + z2 − 2∆γ)

×(pµ
i ω

i(z1)p
µ
j ω

j(z2)
1

E(z1, z2)2
+

4

E(z1, z2)2
∂z1

∂z2
logE(z1, z2))

×det(Φ3/2
a (zb))

(5.7)

Choosing z1 + z2 = 2∆γ , the spin sum in (5.7) simplifies to

∑

δ

〈κ|δ〉θ[δ](0)2θ[δ +
1

2
L](0)θ[δ +

1

2
L](z1 − z2) (5.8)

which, after applying a Riemann identity, becomes

4θ[κ](
1

2
(z1 − z2))

2θ[κ+
1

2
L](

1

2
(z1 − z2))

2 (5.9)

So in fact after summing over spin structures this looks the same as the spin sum of the

first type of matter contribution (5.2). Again, it vanishes like (z1 − z2)
2 as z1 → z2.

Now, the argument for the cancellation proceeds as it did for the first type of matter

contribution. The terms involving only the 1
E(z1,z2)2

multiplying loop momenta only have

a second order pole, which cannot cancel the third order zero coming from the determinant

times the spin structure sum (5.9). The terms involving higher inverse powers of the prime

forms lead to a simple pole (which cancels after summing over matter and ghosts, as it is

proportional to the total central charge) and no finite contributions.

Next, let us consider the terms in the correlator of picture changing operators coming

from the ghost part of the worldsheet supercurrent (4.5). There are three types of terms

that arise [11]. We are in the twist structure (1, 1, f, g). As in the matter sector, the f twist

affects the characteristics of the θ-functions arising in the worldsheet correlation functions

10



and determinants. We will denote the shift in the characteristic, which is (0, 0, 1/2, 0), as
1
2L. The first type of contribution is

∑

δ

〈κ|δ〉θ[δ](0)3θ[δ + 1
2
L](0)2θ[δ](2z2 − 2∆γ)θ(z1 − z2 +

∑

w − 3∆)

θ[δ](z1 + z2 − 2∆γ)2E(z1, z2)3

×det(Φa(zb))

∏

E(z1, w)
∏

E(z2, w)
∂z1

log(

∏

E(z1, w)

E(z1, z2)5σ(z1)
)

+(z1 ↔ z2)

(5.10)

The second is

∑

δ

〈κ|δ〉θ[δ](0)3θ[δ + 1
2
L](0)2ωi(z1)∂

iθ[δ](2z2 − 2∆γ)θ(z1 − z2 +
∑

w − 3∆)

θ[δ](z1 + z2 − 2∆γ)2E(z1, z2)3

×det(Φa(zb))

∏

E(z1, w)
∏

E(z2, w)

+(z1 ↔ z2)

(5.11)

The third is

∑

δ

〈κ|δ〉θ[δ](0)3θ[δ + 1
2
L](0)2θ[δ](2z2 − 2∆γ)ωi(z1)∂

iθ(z1 − z2 +
∑

w − 3∆)

θ[δ](z1 + z2 − 2∆γ)2E(z1, z2)3

×detΦa(zb)

∏

E(z1, w)
∏

E(z2, w)

+(z1 ↔ z2)

(5.12)

Setting z1 +z2 = 2∆γ and doing the spin structure sum we find for the spin-structure-

dependent pieces of contributions (5.10) and (5.12):

∑

δ

〈κ|δ〉θ[δ](0)θ[δ+
1

2
L](0)2θ[δ](2z2 − 2∆γ)

= θ[κ](z2 − ∆γ)2θ[κ+
1

2
L](z2 − ∆γ)2

∼ (z1 − z2)
2 + c4(z1 − z2)

4 + . . .

(5.13)

for some constant c4 where in the last line we expanded the result in a Taylor expansion

around z1 = z2. For contribution (5.11) we get

∑

δ

〈κ|δ〉θ[δ](0)θ[δ +
1

2
L](0)2ωi(z1)∂

iθ[δ](2z2 − 2∆γ)

= ∂z1

(

θ[κ](
1

2
(z1 − z2))

2θ[κ+
1

2
L](

1

2
(z1 − z2))

2

)

∼ (z1 − z2) + b3(z1 − z2)
3 + . . .

(5.14)
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As for the matter contributions, although the spin structure sums give vanishing

contributions, they multiply singularities arising from the prime forms E(z1, z2) and we

must analyze the potential finite terms in the Taylor expansion. Let us consider first (5.10).

There are two types of contributions here. After doing the spin structure sum as above

the first takes the form

−5
∂1E(z1, z2)

E(z1, z2)4
[z2

12 + c4z
4
12 + . . .][z12 + e3z

3
12 + . . .]

∏

E(z1, w)
∏

E(z2, w)
+ (z1 ↔ z2) (5.15)

where we denote z1−z2 by z12. Here the second factor comes from the spin structure sum,

the third from the Taylor expansion of the determinant about z1 = z2 (where e3 is some

constant). We should emphasize what is meant here by (z1 ↔ z2). We are computing a

correlation function of picture changing operators. The ghost piece of this correlator has

the form (4.5). So for example the second term in (4.5) corresponds to the term denoted

z1 ↔ z2 in (5.15). So in particular the second term involves interchanging the operators

in the ghost correlator, without changing z1 to z2 in the determinant factor. The first

and fourth factors involving the prime forms encode the physical poles and zeroes of the

correlator. The leading singularity from the prime forms here comes from the 1/z4
12 term

in the expansion of the prime form factors. Therefore only the leading term in the Taylor

expansion of the spin structure sum and determinant factors potentially survive (so we

can ignore the terms proportional to c4 or e3, which give fifth-order zeroes). Similarly

expanding the prime forms E(z1, z2) gives a subleading term with only a 1/z2
12 pole, which

is cancelled by the third order zero coming from the leading piece of the spin structure

sum times determinant.

Putting the factors together, we see that the leading piece is a simple pole in z12. The

first three factors in (5.15) are the same in the term with z1 ↔ z2. When we include the

term with z1 ↔ z2, they multiply the prime form factor

∏

E(z1,w)
∏

E(z2,w)
+

∏

E(z2,w)
∏

E(z1,w)
. This is even

under z1 ↔ z2. In our Taylor expansion it therefore becomes of the form O(1)+f2z
2
12+ . . .,

and only the first term contributes. Therefore in Taylor expanding the contribution (5.15),

we get a pole piece plus higher order terms which vanish in the limit z1 → z2. In particular,

no finite pieces survive. What is the interpretation of the pole piece? It is proportional

to the ghost central charge, and precisely cancels the pole piece coming from the matter

contribution.

The second type of contribution in (5.10) takes the form

1

E(z1, z2)3
[z2

12 + . . .][z12 + . . .]

∏

E(z1, w)
∏

E(z2, w)
∂1log(

∏

E(z1, w)

σ(z1)
) (5.16)
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where the . . . denotes terms which vanish automatically as z1 → z2. The leading pole from

the prime forms here is cubic. Before including the z1 ↔ z2 term there is a finite piece

obtained by multiplying this times the third order zero obtained from the spin structure

sum and determinant factors. The spin structure sum is even under the interchange of

z1 and z2 in this case, and as discussed above the determinant factor is the same in both

terms. The factor 1
E(z1,z2)3

does change sign between the two terms, however. So when we

add the (z1 ↔ z2) term the contribution cancels.

Let us now consider the contribution (5.11). This gives a contribution of the form

1

E(z1, z2)3
[z12 + . . .][z12 + . . .]

(∏

E(z1, w)
∏

E(z2, w)
+

∏

E(z2, w)
∏

E(z1, w)

)

(5.17)

Here similarly to the above analysis we took into account the relative sign of the two

contributions in (4.5) and included the z1 ↔ z2 contribution. The last factor here is even

under interchange of z1 and z2, so its Taylor expansion is of the form 1 + h2z
2
12 + . . . for

some constant h2. The leading contribution here is a simple pole, and there is no finite

contribution.

Unlike the previous simple poles we have encountered, the pole encountered here does

not cancel with the other matter and ghost contributions (it is not one of the pieces

which would have contributed to the c
z4 pole in the OPE of picture changing operators

before accounting for spin structure sums and determinant factors). However, on general

grounds we expect such gauge artifact poles to constitute total derivatives on moduli space.

Otherwise the invariance of the path integral on gauge slice would be lost. In this case,

we can argue for that conclusion as follows. The pole we are discussing receives a 1
(z1−z2)3

contribution from the prime forms which is softened to 1
(z1−z2)2

by the theta function zero

(and then to a simple pole by the determinant factor). In the OPE of picture changing

operators, the 1
(z1−z2)2 divergence is multiplied by the stress-energy tensor, which gives a

derivative with respect to the metric and therefore the moduli. The term we are finding

is part of this total derivative. In the gauge we have chosen, it is the only non-vanishing

piece (the other pieces vanish even before integration over the moduli space). However,

since there cannot be gauge artifact poles, we expect it to integrate to zero (which one can

argue for using the boundary analysis in [1]).

Finally let us consider the last ghost contribution (5.12). This contribution takes the

form
1

E(z1, z2)3
[z2

12 + . . .][z12 + . . .]

∏

E(z1, w)
∏

E(z2, w)

+(z1 ↔ z2)

(5.18)
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In this contribution before including the z1 ↔ z2 contribution there is a potential finite

term from the third order pole multiplying a third order zero in z12. Here again, in the

limit z1 → z2 every factor except the first is the same in the two terms. The first factor
1

E(z1,z2)3
has the opposite sign in the two terms. Thus again after including the z1 ↔ z2

term the contribution cancels.

6. Discussion

In the original models of the type described in [1], as well as in the new model described

in [2], we see here that the two loop contribution cancels in the gauge with coincident

picture changing operators after properly taking into account the singularities.

This analysis, combined with the analysis of boundary contributions presented in [1],

yields a vanishing two loop cosmological constant in these models. Note that we computed

this contribution in a particular twist structure, in the gauge where z1 and z2 approach a

particular branch point ∆γ . Performing a modular transformation moves us to a different

twist structure–as explained in [1] one can recover all twist structures in this way–but

also permutes the branch points and in general will change the gauge choice.3 However

at a given twist structure, one choice of insertion points for picture changing operators is

related to another by total derivative terms which cancel in our model [1]. Therefore in

a fixed gauge we are in fact not finding cancellation pointwise on the moduli space, but

instead only after integration (using the formal argument of [11] to reduce the integrals to

boundary contributions). A modular invariant integrand is obtained on the other hand if

we let the gauge choice get modular tranformed along with the twist structure. Needless

to say it would be interesting to compute the integral directly in some fixed gauge to check

the cancellation independently.
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